Solution Q1.1:

$p_{t}=E\left(s_{t} \mid y_{t-1}\right)=P\left(s_{t}=1 \mid y_{t-1}\right)$.
Set $p_{y}=p_{t}$ with $y_{t-1}=y . E\left(1+y_{t}^{2} \mid y_{t-1}=y\right)=1+\omega+\left[p_{y} \alpha+\left(1-p_{y}\right)\right] y^{2}$ So as $p_{y} \rightarrow 1$ when $y^{2} \rightarrow \infty$, we find that we need $\alpha<1$ for drift criterion with $d(y)=1+y^{2}$.

Thus nonlinear ARCH: we have "no-variance regime" with say $\tilde{\alpha}=1$ and one "finite variance" regime with $\alpha<1$ - but the process has finite variance provided $\alpha<1$.

Solution Q1.2: By definition of (conditional) mixture models.
Solution Q1.3: $p_{t}^{*}=\frac{p_{t} f_{1, t}}{p_{t} f_{1, t}+\left(1-p_{t}\right) f_{0, t}}$ and is the conditional smoothed probability $p_{t}^{*}=P\left(s_{t}=1 \mid y_{t}, y_{t-1}\right)$.

Algorithm step n: compute p_{t}^{*} for $\hat{\theta}_{n-1}$. Next, solve numerically with p_{t}^{*} fixed, $\sum_{t=1}^{T}\left(\frac{y_{t}^{2}}{\sigma_{1, t}^{2}}-1\right) p_{t}^{*} \frac{y_{t}^{2}}{\sigma_{1, t}^{2}}=0$ and update $\hat{\theta}_{n}$.

Solution Q1.4: Given p_{t} one could set $s_{t}=1$ if $u_{t} \in\left[0, p_{t}\right]$ and $s_{t}=0$ otherwise, where u_{t} is $U[0,1]$. An example could be, the logistic, $p_{t}=\left(1+\exp \left(-y_{t}^{2}\right)\right)^{-1}$ Misspecified $\operatorname{IGARCH}(1,1), \hat{\alpha}+\hat{\beta}=1$ and $\hat{\alpha} \approx 0$.

Q2.1: long memory $-\Delta^{d} v_{t}=\varepsilon_{t}$.
Q2.2: As s_{t} is iid and stationary for all $\left.p_{i} \in\right] 0,1\left[-\right.$ then so is ε_{t}. (any form of the interval [0,1$]$ will do).
$E \varepsilon_{t}^{2}=E \sigma_{s_{t}}^{2}=\sigma_{1}^{2} p_{1}+\sigma_{2}^{2} p_{2}:=\omega . E \varepsilon_{t} \varepsilon_{t-1}=0$ as z_{t} are iid mean zero.
$E v_{t}^{* 2}=\sum(1+\pi)^{2 i} \omega=\frac{\omega}{1-(1+\pi)^{2}}<\infty . v_{t}^{*}$ is a stationary solution to the equation for v_{t}.

Q2.3: Use the EM-algoritm with:

$$
\begin{equation*}
L_{\mathrm{EM}}\left(Y_{T} ; \theta\right)=c+\sum_{i, j=1}^{2} \log p_{i j} \sum_{t=2}^{T} p_{t}^{*}(i, j)+\sum_{j=1}^{2} \sum_{t=1}^{T} p_{t}^{*}(j) f_{\theta}\left(v_{t} \mid v_{t-1}, j\right) \tag{1}
\end{equation*}
$$

where the important difference with the standard case considered in the notes is the term $f_{\theta}\left(v_{t} \mid v_{t-1}, j\right)$, where,

$$
\begin{equation*}
f_{\theta}\left(y_{t} \mid y_{t-1}, j\right)=\frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left(-\frac{1}{2 \sigma_{j}^{2}}\left(\Delta v_{t}-\pi v_{t-1}\right)^{2}\right) \tag{2}
\end{equation*}
$$

and the smoothed probabilities are given by:

$$
p_{t}^{*}(i, j)=P_{\tilde{\theta}}\left(s_{t-1}=i, s_{t}=j \mid Y_{T}\right) \quad \text { and } \quad p_{t}^{*}(j)=P_{\tilde{\theta}}\left(s_{t}=j \mid Y_{T}\right)
$$

Q2.4: misspecified model (LM tests indicate non-normal residuals with ARCH effects) - the autoregressive root is $1+\hat{\pi}=0.84$ which may indicate nonstationarity. The \hat{P} matrix seems nice and "stationary" - but really we cannot conclude much as the misspecification tests so clearly indicate wrong model.

Q2.5: Use Ito's: $f(u, V)=\exp (-b u) V ; f_{V}=\exp (b u) ; f_{V V}=0 ; f_{u}=$ $-b \exp (-b u) V$;

$$
\begin{align*}
& d\left(\exp (b u) V_{u}\right) \tag{3}\\
& =\exp (-b u)\left(b V_{u} d u+c d W_{u}\right)-\left(b \exp (-b u) V_{u}\right) d u \tag{4}\\
& =\exp (-b u) a d u+\exp (-b u) c d W_{u} \tag{5}
\end{align*}
$$

Hence,

$$
\begin{align*}
\exp (-b u) V_{u} & =V_{0}+\int_{0}^{u} \exp (-b s) c d W_{s} \tag{6}\\
V_{u} & =\exp (b u) V_{0}+\int_{0}^{u} \exp (b(u-s)) c d W_{s} \tag{7}
\end{align*}
$$

We conclude:

$$
\begin{equation*}
v_{n}=\exp (b) v_{n-1}+\varepsilon_{n} \tag{8}
\end{equation*}
$$

and hence, $\pi=\exp (b)-1$. Or $b=\log (1+\pi)$ st $\hat{b}=\log (1-0.16)=\log (0.84)=$ -0.17 .

Stationary: $b<0$ and also DF test for $\pi=0=b$.

